Рецепторы слухового анализатора это

Содержание

Слуховой анализатор: строение и функции — Сайт о заболеваниях глаз и их лечении

Рецепторы слухового анализатора это

Слуховой анализатор является важнейшей частью системы чувств человека. Строение слухового анализатора позволяет людям общаться друг с другом посредством передачи звука, воспринимать, интерпретировать и реагировать на звуковую информацию: когда приближается машина, благодаря звукам, воспринятым посредством слуха, человек вовремя уходит с дороги, что позволяет избежать опасной ситуации.

Что такое звук

Звуковые волны являют собой вибрации в твердой, жидкой или газообразной среде, которые можно услышать с помощью органа слуха. Звук определяется в слышимом диапазоне спектра, точно так же как свет – в видимой части спектра электромагнитных волн.

Вибрации звуковых волн являют собой распространение движения на молекулярном уровне, которое характеризуется движением молекул около состояния равновесия.

В процессе этого движения, которое создается механическим путем, молекулы подвергаются акустическому давлению, которое приводит к тому, что они сталкиваются друг с другом и передают эти вибрации дальше.

Когда передача энергии прекращается, смещенные со своего места молекулы возвращаются в исходное положение.

Сходство зрительного и слухового анализатора в том, что они оба способны воспринимать конкретные качества, выбирая их из общего звукового потока. Например, место расположения источника звука, его громкость, тембр и т.д.

Но физиология слухового анализатора функционирует так, что слуховая система человека не смешивает разные частоты, как это делает зрение, когда различные длины световых волн смешиваются друг с другом, – и глазной анализатор представляет это в виде непрерывного цвета.

Вместо этого звуковой анализатор разделяет сложные звуки на составляющие тоны и частоты так, что человек различает голоса конкретных людей в общем гуле или отдельные инструменты в звуках оркестра. Особенности отклонений в слухе позволяют выявить различные аудиометрические методы исследования слухового анализатора.

Наружное и среднее ухо

То, как устроен слуховой анализатор влияет на работу его структур, отделов уха, подкорковых релейных и корковых центров. Анатомия слухового анализатора включает в себя строение уха, стволовых и корковых отделов головного мозга. Отделы слухового анализатора – это:

  • периферическая часть слухового анализатора;
  • корковый конец слухового анализатора.

Согласно схеме, строение уха состоит из 3 частей. Внешнее и среднее передают звуки ко внутреннему уху, где они преобразуются для обработки нервной системой в электрические импульсы. Таким образом, функции слухового анализатора делятся на звукопроводящие и звуковоспринимающие.

Внешнее, среднее и внутреннее ухо – это периферический отдел слухового анализатора. Внешняя часть уха состоит из ушной раковины и слухового прохода. Этот проход закрывает с внутренней стороны барабанная перепонка. Слуховой анализатор строение и функции которого включают периферический отдел слухового анализатора, выполняет роль акустической антенны.

Звуковые волны собираются в части внешнего уха, которая называется ушная раковина и по ушному проходу достигает барабанной перепонки, заставляя ее вибрировать. Таким образом, внешнее ухо является резонатором, что усиливает звуковые колебания.

Барабанная перепонка – это конец внешнего уха. Дальше начинается среднее, которое сообщается с носоглоткой посредством евстахиевых труб.

Возрастные особенности слухового анализатора в том, что у новорожденных полость среднего уха заполнена амниотической жидкостью, которую к третьему месяцу сменяет воздух, что попадает сюда через евстахиевы трубы.

В полости среднего уха барабанная перепонка соединяется при помощи цепи из трех слуховых косточек с другой перепонкой, называемой овальным окном. Она закрывает полость внутреннего уха.

Первая косточка, молоточек, вибрируя под действием барабанной перепонки, передает эти колебания наковальне, которая заставляет колебаться стремечко, что давит на овальное окно в улитке.

Основание стремечка оказывает механическое давление, усиленное в десятки раз, на овальное окно, в результате чего перилимфа в улитке начинает колебаться.

Помимо овального окошка, существует круглое, которое также отделяет полость среднего уха и внутреннего уха.

Соотношение барабанной перепонки к поверхности овального окошка составляет 20:1, что позволяет усилить звуковые колебания в двадцать раз. Это надо для того, чтобы для колебания жидкости во внутреннем ухе нужно гораздо больше энергии, чем для колебания воздуха в среднем.

Внутреннее ухо

Во внутреннем ухе представлены два различных органа – слуховой и вестибулярный анализаторы. Благодаря этому схематически строение внутреннего уха предусматривает наличие:

  • преддверия;
  • полукруглых каналов (отвечают за координацию);
  • улитки (отвечает за слух).

Оба анализатора имеют сходные морфологические и физиологические свойства. Среди них – волосковые клетки и механизм передачи информации к головному мозгу.

Различение звуковых частот начинается в улитке внутреннего уха. Она устроена так, что разные ее части реагируют на различную высоту звуковых колебаний. Высокие ноты колеблют одни части базилярной мембраны улитки, низкие – другие.

В базилярной мембране располагаются волосковые клетки, на верхушке которых расположены целые пучки стереоцилий, которые отклоняются расположенной сверху мембраной.

Волосковые клетки превращают механические вибрации в электрические сигналы, которые по слуховому нерву идут к стволу головного мозга. Таким образом, проводниковый отдел слухового анализатора представлен волокнами слухового нерва.

Поскольку каждая волосковая клетка имеет свое место в базилярной мембране, каждая клетка передает в мозг звук другой тональности.

Структура улитки

Улитка является «слышащей» частью внутреннего уха, что размещается в височной части черепа. Она получила свое название благодаря спиральной форме, напоминающую ракушку улитки.

Состоит улитка из трех каналов. Два из них, scala tympani и scala vestibule, заполнены жидкостью, называемой перилимфа. Взаимодействие между ними происходит с помощью маленького отверстия, что именуется helicotrema. Кроме того, между scala tympani и scala vestibuli расположены с внутренней стороны нейроны спирального ганглия и волокна слухового нерва.

Третий канал, scala media, расположен между scala tympani и scala vestibule. Он наполнен эндолимфой. Между scala media и scala tympani на базилярной мембране находится структура, что называется Кортиев орган.

Каналы улитки состоят из двух разновидностей жидкости, перилимфы и эндолимфы. Перилимфа имеет тот же ионный состав, что и внеклеточная жидкость в любой другой части тела. Она наполняет scala tympani и scala vestibule.

Эндолимфа, заполняющая scala media, имеет уникальный состав, предназначенный только для этой части тела состав. Прежде всего, она очень богата калием, который вырабатывается в stria vascularis и очень бедна натрием.

Также в ней практически отсутствует кальций.

Эндолимфа имеет позитивный электрический потенциал (+80 mV) по отношению к перилимфе, богатой натрием. Кортиев орган в верхней части, где расположены стереоцилии, смачивается эндолимфой, у основания клеток – перилимфой.

Таким методом улитка способна провести очень сложный анализ звуков, как по их частоте, так и по громкости. Когда давление звуков передается к жидкости внутреннего уха стремечком, давление волн деформирует базилярную мембрану в той области канала улитки, которая отвечает за эти вибрации. Таким образом, более высокие ноты вынуждают колебаться основание улитки, а низкие ноты – ее вершину.

Доказано, что человеческая улитка способна воспринимать звуки различной тональности. Их частота может изменяться в диапазоне от 20 Гц до 20000 Гц (приблизительно 10-я октава), с шагом в 1/230 октавы (от 3 Гц до 1 тыс. Гц). На частоте 1 тыс. Гц, улитка способна зашифровать давление звуковых волн в диапазоне между 0 дБ и 120 дБ.

Слуховой кортекс

Кроме уха и слухового нерва слуховой анализатор включает в себя головной мозг.

Звуковая информация анализируется в мозгу в разных центрах, по мере того, как сигнал направляется в верхнюю височную извилину головного мозга.

Это слуховой кортекс, который выполняет обрабатывающую звук функцию слухового анализатора человека. Здесь находится огромное количество нейронов, каждый их которых исполняют свою задачу. Например, есть нейроны, что:

  • реагируют на чистые тона (звуки флейты);
  • распознают сложные тона (звуки скрипки);
  • отвечают за длинные звуки;
  • реагируют на короткие звуки;
  • отвечают на изменения громкости звуков.

Есть и такие нейроны, что могут отвечать за сложные звуки, например, определять музыкальный инструмент или слово речи. Связи между слуховым и речедвигательным анализаторами позволяют изучать человеку иностранные языки.

Звуковая информация обрабатывается в различных областях звукового кортекса в обоих полушариях головного мозга. У большинства людей левая сторона мозга отвечает за восприятие и воспроизведение речи. Поэтому повреждение левого слухового кортекса при инсульте может привести к тому, что человек хоть и будет слышать, но не сможет понимать речь.

Первичный путь

Звуковая информация собирается в мозгу двумя проводящими путями слухового анализатора:

  • Первичный слуховой путь, который передает сообщения исключительно от улитки.
  • Непервичный слуховой путь, который также называют ретикулярный сенсорный путь. Он передает сообщения от всех органов чувств.

Первичный путь является коротким и очень быстрым, поскольку скорость передачи импульсов обеспечивают волокна с толстым слоем миелина. Этот путь заканчивается в слуховом кортексе головного мозга, что расположен в боковой борозде височной части головного мозга.

Первичные проводящие пути слухового анализатора проводят нервные импульсы от звукочувствительных клеток улитки. При этом в каждом конечном пункте звена передачи происходит расшифровка и интеграция нервных импульсов ядерными клетками улитки.

Первое переключательное ядро первичного слухового пути находится в улиточных ядрах, что располагается в стволе головного мозга. Нервные импульсы идут по спиральным ганглиарным аксонам типа 1. На этом уровне переключения происходит расшифровка нервных звуковых сигналов, которые характеризуют продолжительность, интенсивность и частоту звука.

Второе и третье переключательные ядра первичного слухового пути играют значительную роль в определении местоположения источника звука. Второе переключательное ядро в стволе головного мозга носит название комплекс верхних олив. На этом уровне большинство синапсов слухового нерва перешли центральную линию. Третье переключательное ядро располагается на уровне среднего мозга.

И, наконец, четвертое переключательное ядро находится в таламусе. Здесь происходит значительная интеграция звуковой информации, и происходит подготовка к моторной реакции (например, произнесение звуков в ответ).

Последний нейрон первичного пути связывает таламус и слуховой кортекс головного мозга. Здесь сообщение, большая часть которого была расшифрована по дороге сюда, распознается, запоминается и интегрируется для дальнейшего произвольного использования.

Непервичные пути

Из ядер улитки небольшие нервные волокна проходят в ретикулярную формацию головного мозга, где звуковые сообщения объединяются с нервными сообщениями, которые поступают сюда от других органов чувств. Следующий пункт переключения – это неспецифические ядра таламуса, после которых этот слуховой путь завершается в полисенсорном ассоциативном кортексе.

функция этих слуховых путей – выработка нервных сообщений, которые подлежат приоритетной обработке. Для этого они соединяются с центрами мозга, отвечающими за чувство бодрствования и мотивации, а также с вегетативной нервной и эндокринной системами. Например, если человек делает сразу два дела, читает книгу и слушает музыку, эта система направит внимание на более важную работу.

Первый передаточный пункт непервичного слухового пути, так же как и первичного, расположен в улиточных ядрах ствола мозга. Отсюда небольшие волокна присоединяются к ретикулярному пути ствола мозга. Здесь, а также в среднем мозгу расположены несколько синапсов, где слуховая информация обрабатывается и интегрируется с информацией от других органов чувств.

Источник: https://cliniceye.ru/otit/sluhovoj-analizator-stroenie-i-funktsii.html

Анализаторы. Органы чувств, их роль в организме. Строение и функции

Рецепторы слухового анализатора это

Анализаторы отвечают за осязание, обоняние, вкус, зрение, слух. Эти органы определяют и передают информацию в мозг. Управляет ими нервная система. Они не являются главными органами для жизнедеятельности человека. Однако, их отсутствие значительно ухудшает качество жизни, контакт с окружающим миром и его восприятие.

Анализаторы. Органы чувств в организме и их роль. Строение

Анализаторы – это сенсорные системы, которые осуществляют восприятие и анализ информации органами чувств. Благодаря анализаторам человек имеет представление не только об представлении окружающего мира, но и воссоздает абстрактное мышление. 

Изучением анализаторов впервые занялся  русский ученый И. П. Павлов. Он считал, что анализаторы – это пучок проводниковых нервов, которые переходят периферический отдел, а затем посылают сигнал в кору головного мозга. Его предположение было изучено и подтверждено.

Рецепторы – это образования, которые передают информацию о внешнем раздражителе. Играют роль проводника нервного импульса в ЦНС.  В зависимости от области локализации их разделяют:

  • внутренние (экстерорецепторы);
  • внешние (интерорецепторы).

Второе название анализаторов – органы чувств. Они все отвечают за какое-либо чувство восприятие окружающего мира:

  • зрение;
  • вкус;
  • слух;
  • осязание;
  • обоняние.

Каждый орган имеет свое место расположение и играет определенную роль.

Строение органа зрения

Зрение обеспечивает более 90 % информации, поступающей в мозг человека из окружающей среды. Для функции зрения дополнительно требуется электромагнитное излучение в виде солнечного или искусственного света. 

Глаз – это округлый орган, слегка неправильной формы. По центру расположен зрачок, который отвечает за фокусирование зрение. Орган представлен следующими частями:

  • бровь;
  • слезная железа;
  • веко;
  • ресницы;
  • слезный мешочек.

За работу глаза отвечает зрительный нерв, он расположен в затылочной части головного мозга. 

Орган состоит из трех оболочек:

  1. белковая; 
  2. сосудистая;
  3. сетчатка.

Снаружи глаз покрыт соединительнотканной белочной оболочкой, которая плавно переходит в прозрачную роговицу глазного яблока. Она отвечает за преломление света, имеет слегка выпуклый вид.

Под ней находится сосудистый слой, который обеспечивает питание органа. В передней части слоя расположены радужная оболочка и ресничное тело, состоящие из мышечной ткани.

Они позволяют зрачку расширяться и двигаться хрусталику,.

С внутренней стороны сосудистой оболочки находится сетчатка. Она преобразует свет в нервные импульсы, по которым проходит сигнал в мозг. Радужка покрывает двояковыпуклую линзу передней части глаза – хрусталик. Он становится в разные положения при восприятии света, прикреплен к ресничным мышцам. 

Фокусирование глаза на определенном предмете называется аккомодацией. За эту функцию и отвечает хрусталик. За ним расположено большое студенистое округлое тело – стекловидное тело.

Внутреннее строение глаза имеет следующий вид:

  • роговица;
  • склера;
  • сосудистая оболочка;
  • радужная оболочка;
  • зрачок;
  • сетчатка;
  • передняя камера;
  • стекловидное тело;
  • хрусталик;
  • зрительный нерв.

Глазные рецепторы представлены палочками и колбочками. Палочек в одном глазном яблоке находится около 125 млн. Они отвечают за преломление света. В состав входит родопсин, цветной пигмент. При попадании света на палочки, они выцветают и разлагаются, после чего поступает сигнал в мозг. 

Интересно! В состав родопсина входит большое количество витамина А, поэтому при его дефиците возникает частичная потеря зрения.

Колбочек в сетчатке намного меньше, чем палочек, до 6 млн. Они отвечают за восприятие цвета. В его состав входит пигмент йодопсин. Его действие происходит также, как и в палочках. Дальтонизм проявляется в тех случаях, когда часть колбочек утрачена.

В глазном яблоке есть слепое пятно. В нем нет ни колбочек, ни палочек. Здесь прикрепляется зрительный нерв, через который передаются сигналы в мозг.

Строение органа слуха

Слуховой аппарат человека передает звуковые сигналы в головной мозг. Восприимчивость колеблется в диапазоне от 16 до 20000 Гц. Внутреннее строение сложное. Орган представлен тремя отделами:

Наружное ухо:

  • височная кость
  • слуховой канал
  • ушная раковина

Среднее ухо:

  •  барабанная перепонка
  •  молоточек
  • наковальня
  • стремечко

Внутреннее ухо:

  • овальное окно
  • полукружные каналы
  • улитка
  • нервы
  • евстахиева труба.

Наружное ухо представлено ушной раковиной, наружным слуховым проходом и барабанной перепонкой. Среднее ухо представлено тремя слуховыми косточками: наковальня, молоточек, стремечко. Последнее стоит на границе с овального окна, которое относится к внутреннему уху. Внутреннее ухо представляет лабиринт из мелких косточек и каналов. 

Полукружные каналы в составе внутреннего уха отвечают за равновесие. Ушная улитка представляет собой костную полость, заполненную жидкостью, имеющую вид улитки, собранной в 2 оборота. Кортиев орган – находится в среднем канале, его волосковые клетки отвечают за восприятие звуковых сигналов.

Звуковые колебания поступают через наружное ухо к барабанной перепонке, вызывают ее раздражение. Затем сигнал проходит через среднее ухо и поступает в  верхнюю часть улитки, где вызывает изменение давления жидкости. Происходит воздействие на волосковые клетки и передача информации по нервным импульсам. 

Строение органа равновесия

Органы равновесия или вестибулярный аппарат играет важную роль в жизнедеятельности человека. Он отвечает за перемещение тела в пространстве. Орган располагается во внутреннем ухе. Имеет периферический и внутренний отдел. 

Периферический включает три полукружный канальца и два мешочка. Находится в пирамиде височной доли рядом с улиткой. Каналы находятся в трех перпендикулярных плоскостях, мешочки — рядом с ними.

Они наполнены жидкостью и замкнуты, так чтобы не происходило вытекания. В стенках каналов находится рецепторы клеток, волоски их погружены в желеобразную жидкость, содержащую ионы кальция.

Называются они отолитовые мембраны (купулы).

Движение тела вызывает изменение расположения этих волосков и происходит возбуждение рецепторов. Сигнал переходит в продолговатый мозг, а затем в мозжечок и гипоталамус. Сигнал также проходит по теменным долям больших полушарий головного мозга. Своевременное поступление сигнала в головной мозг, обеспечивает поддержание тела в пространстве.

Строение и функции органа осязания

Орган осязания не имеет определенного места локализации. Он расположен на поверхности кожи, а кожа покрывает все тело человека. Он есть даже на языке, который чувствует прикосновения и различает вкусы. Кожа представлена тремя слоями:

  • эпидермис;
  • дерма;
  • гиподерма.

На поверхности кожи расположены нервные рецепторы. Нейроны лежат аксонами на поверхности кожи. При прикосновении происходит передача нервного импульса в мозг через сеть нервных клеток. Окончательная точка импульса – теменная доля коры больших полушарий мозга. При помощи таких рецепторов человек способен различать:

  • размеры;
  • форму;
  • вибрацию;
  • боль;
  • тепло;
  • холод.

Строение органа вкуса

Вкусовые качества пищевых продуктов может определить орган вкуса, который представлен языком. Он располагается в ротовой полости, его прикрывают зубы, лежит между верхним и нижним небом. Движение языком обуславливается мышечными волокнами, ограничение происходит за счет подъязычной уздечки. Вкусовые рецепторы расположены по всех поверхности, каждый отдел отвечает за свой вкус.

Все вещества имеют специфический вкус. Выделяют четыре основных:

  • сладкое;
  • соленое;
  • кислое;
  • сладкое.

Их сочетание создает различные вкусы. Рецепторы находятся на поверхности вкусовых почек, они расположены на поверхности вкусовых сосочков языка. На кончике языка рецепторы отвечают за сладкое, чуть выше соленое, кислые почки находятся по бокам, а горькие у корня языка, практически возле глотки.

Такое расположение сосочков не случайно. Эволюция предусмотрела рвотный рефлекс, особенно он обостряется если горькие продукты или веществ попадают на рецепторы. Это работает, как защитная реакция от горьких веществ.

Вкусовые сосочки имеют разную форму, в зависимости от функции и места локализации:

  • грибовидные;
  • желобоватые;
  • нитевидные;
  • листовидные.

Строение органа обоняния

Отвечает за различие запахов. Имеет вид носа. Наружный орган имеет носовые ходы, выстланные ресничками. Нос также относится к органам дыхания, входит в состав дыхательной системы, играет роль проводника кислорода к дыхательным путям.

Система обоняния человека. 1: Обонятельная луковица 2: Миндалины 3: Кость 4: Носовой эпителий 5: Клубочки 6: Обонятельные рецепторы

За обонятельные функции отвечают ресничные клеточки, погруженные в эпителий верхней части носовой полости. При помощи этик клеток, человек способен различать запахи. В биологии выделяют основные запахи:

  • пряный;
  • смолистый;
  • гнилостный;
  • цветочный;
  • горелый;
  • фруктовый.

Все остальные считаются комбинациями 6 основных запахов. Даже при низкой концентрации летучего веществ  в воздухе, обонятельные рецепторы передают сигналы через нервы в кору больших полушарий переднего мозга, расположенного в височной доле.

Рецепторы вкуса и обоняния относятся к хеморецепторам, их возбуждение начинается только при взаимодействии с молекулами летучих или растворенных веществ. Потому их можно называть хеморецепторами. Все анализаторы тесно связаны между собой.

Известно, что если один из рецепторов имеет определенные отклонения и неспособен полностью выполнять свою функцию, то другие развиваются сильнее.

Например, если человек рожден слепым, то обоняние и осязание у него развиты лучше, чем у других людей.

Источник: https://bingoschool.ru/manual/319/

Орган слуха и равновесия

Рецепторы слухового анализатора это

Состоит из трех отделов:

  • Периферического — слуховые рецепторы внутреннего уха
  • Проводникового — слухового нерва
  • Центрального — височной доли коры больших полушарий

Ухо человека состоит из 3 отделов: наружного, среднего и внутреннего. Давайте поговорим о каждом более подробно.

  • Наружное ухо
  • К наружному уху относится ушная (слуховая) раковина и наружный слуховой проход. Ушная раковина помогает улавливать звук — колебания воздуха, и направлять их в наружный слуховой проход, служащий резонатором, который усиливает звуковую волну.В просвет наружного слухового прохода открываются протоки серных желез, вырабатывающих особый секрет — серу. Она необходима для защиты слухового прохода от грибов, бактерий и мелких насекомых. Схожую функцию выполняют волоски, покрывающие слуховой проход и препятствующие попаданию в него пыли.На границе наружного и внутреннего отдела уха располагается барабанная перепонка, анатомически относящаяся к среднему уху.

  • Среднее ухо
  • Средний отдел уха представлен барабанной перепонкой, барабанной полостью, продолжающейся в евстахиеву трубу, которая соединяет барабанную полость и носоглотку. В барабанной полости находятся три самые маленькие косточки нашего организма: молоточек, наковальня и стремечко.Слуховые косточки соединяются друг с другом подвижными суставами. Молоточек соединен с барабанной перепонкой, вследствие чего колебания барабанной перепонки передаются последовательно на молоточек, наковальню и стремечко. Стремечко соединяется с овальным окном (часть внутреннего уха), колебания которого предаются жидкости внутреннего уха.Евстахиева труба соединяет барабанную полость и полость носоглотки, уравнивая в них давление: в результате давление становится одинаковым по обе стороны барабанной перепонки.Открытие глоточного отверстия евстахиевой трубы происходит в момент глотания (попробуйте глотнуть с усилием, и, возможно, услышите треск/щелчок — это открылось глоточное отверстие евстахиевой трубы, давление по обе стороны уравнялось).Во время взлета давление в салоне и кабине самолета уменьшается, уши может «заложить» как раз из-за несоответствия давления в носоглотке и барабанной полости. Глотательные движения способствуют открытию отверстия евстахиевой трубы, и давление выравнивается: вот зачем на борту самолета перед взлетом раздают леденцы 🙂

  • Внутреннее ухо
  • Мы добрались с вами до самого древнего отдела (который возник еще у рыб), расположенного в глубине височной кости — внутреннего уха. Оно представляет собой костный лабиринт, внутри которого располагается перепончатый лабиринт. Пространство между костным и перепончатым лабиринтом заполнено перилимфой, а полость внутри перепончатого лабиринта — эндолимфой.Костный лабиринт включает в себя три отдела:

    • Преддверие — орган равновесия
    • Улитку — орган слуха
    • Трех полукружных канальцев — орган равновесия

    Органы слуха и равновесия тесно связаны между собой, поэтому, как только мы закончим изучение внутреннего уха, мы приступим к органу равновесия, анатомически находящемуся очень близко.

    Вернемся к органу слуха. Улитка представляет собой спирально закрученный костный канал, делающий 2.5 оборота вокруг своей оси. Именно здесь внутри перепончатого лабиринта, заполненного эндолимфой, находится орган слуха — кортиев орган.

    Изучая среднее ухо, вы усвоили, что колебания стремечка передаются на овальное окно. С него колебания передаются перелимфе, а затем — эндолимфе, которая своим движением раздражает чувствительные волосковые клетки кортиева органа. Именно так, колебания, которые начались в барабанной перепонке, в конченом итоге достигают чувствительных волосковых клеток.

Восприятие звуковых раздражений

Ухо человека может слышать звук частотой от 16 до 20 000 Гц, верхняя граница с возрастом меняется, вследствие снижения эластичности барабанной перепонки.

Звук — колебания воздуха, которые орган слуха преобразует в нервные импульсы, поступающие в височную долю коры больших полушарий.

Давайте еще раз разберем весь путь, который проходит звуковая волна:

  • Звуковые колебания улавливаются наружным ухом, проходят по наружному слуховому каналу и вызывают колебания барабанной перепонки
  • Колебания барабанной перепонки передаются слуховым косточкам, которые усиливают их и передают на овальное окно, колебания которого приводят в движение перилимфу
  • Через стенки перепончатого лабиринта колебания перилимфы вызывают колебания эндолимфы
  • Колебания эндолимфы вызывают раздражение рецепторных клеток кортиева органа — волосковых, которые генерируют нервные импульсы, идущие по слуховому нерву в КБП (височную долю)

Попытайтесь сами, пользуясь схемой ниже, описать путь звуковой волны, вводите в лексикон новые термины. Также ответьте на мой вопрос: «Зачем нам нужна евстахиева труба»?

Гигиена и заболевания уха

Нельзя извлекать серу из уха острыми предметами — это может привести к повреждению барабанной перепонки. При заболеваниях носа не следует усердствовать с высмаркиванием: при резком, сильном движении воздуха микробы могут попасть в евстахиеву трубу, и затем — в полость среднего уха, приведя к отиту — воспалению уха (греч. ὠτός — ухо).

Следует избегать прослушивания громкой музыки в наушниках, особенно вакуумных — сильные раздражение переутомляют барабанную перепонку, ее эластичность снижается — слух притупляется.

Орган равновесия (вестибулярный аппарат)

Состоит из преддверия и трех полукружных канальцев, лежащих во взаимно перпендикулярных плоскостях. Полукружные канальцы внутри заполнены эндолимфой, снаружи них находится перилимфа.

Конец каждого из полукружных канальцев образует расширение — ампулу, все канальцы открываются в преддверие. В каждом расширении — ампуле — расположены чувствительные волосковые клетки, реагирующие на угловое ускорение, которое связано с изменением равновесия.

Преддверие содержит части перепончатого лабиринта — мешочки, которые заполнены эндолимфой. В мешочках находятся чувствительные волосковые клетки, волоски которых погружены в желеобразную мембрану с отолитами — кристаллами CaCO3.

За счет ускорения или замедления отолиты с мембраной смещаются соответственно кпереди или кзади. Перемещение отолитов с мембраной раздражает волосковые клетки, в которых генерируется нервный импульс. Таким образом, эти рецепторы реагируют на прямолинейное ускорение или замедление.

Источник: https://studarium.ru/article/109

5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха

Рецепторы слухового анализатора это

Анализатор — функциональная система, состоящая из:

— рецептора,

— чувствительного проводящего пути

— соответствующей зоны коры, куда проецируется данный вид чувствительности.

Анализ и синтез полученной информации осуществляются в строго определенном участке — зоне коры больших полушарий.

По особенностям клеточного состава и строения кору больших полушарий разделяют на ряд участков, называемых корковыми полями. Функции отдельных участков коры неодинаковы. Каждому рецепторному аппарату на периферии соответствует область в коре — корковое ядро анализатора.

       Важнейшиезоны коры следующие:

      • Двигательная зона расположена в переднецентральной и заднецентральной областях коры (передней центральной извилине впереди центральной борозды лобной доли).

       • Чувствительная зона (зона кожно-мышечной чувствительности расположена позади центральной борозды, в задней центральной извилине теменной доли). Наибольшую площадь занимает корковое представительство рецепторов кисти и большого пальца руки, ого аппарата и лица, наименьшую — представительство туловища, бедра и голени.

       • Зрительная зона сосредоточена в затылочной доле коры. В нее поступают импульсы от сетчатки глаза, она осуществляет различение зрительных раздражений.

       • Слуховая зона расположена в верхней височной извилине височной доли.

       • Обонятельная и вкусовая зоны — в переднем отделе (на внутренней поверхности) височной доли каждого полушария.

В нашем сознании деятельность анализаторов отражает внешний материальный мир. Это дает возможность приспосабливаться к условиям среды путем изменения поведения.

Деятельность коры головного мозга человека и высших животных определена И.П. Павловым как высшая нервная деятельность, представляющая собой условно-рефлекторную функцию коры головного мозга.

Анализаторы  – совокупность нервных образований, обеспечивающих осознание и оценку, действующих на организм, раздражителей. Анализатор состоит из воспринимающих раздражение рецепторов, проводящей части и центральной части – определенной области коры головного мозга, где формируются ощущения.

Зрительный анализатор  обеспечивает получение зрительной информации из окружающей среды и  состоит из трех частей:

Глаз  состоит из глазного яблока и вспомогательного аппарата, к которому относятся веки, ресницы, слезные железы и мышцы глазного яблока

фиброзную, задний отдел которой образован непрозрачной белочной  оболочкой (склерой),

сосудистую 

сетчатую

Часть сосудистой оболочки, снабженная пигментами, называется радужной оболочкой.                              

В центре радужной оболочки находится зрачок, который может изменять диаметр своего отверстия за счет сокращения глазных мышц.

Задняя часть сетчатки воспринимает  световые раздражения. Передняя ее часть – слепая и не содержит светочувствительных элементов. Светочувствительными элементами сетчатки являются:

палочки  (обеспечивают зрение в сумерках и темноте)

колбочки  (рецепторы цветового зрения, работающие при высокой освещенности).

Колбочки расположены ближе к центру сетчатки (желтое пятно), а палочки концентрируются на ее периферии. Место выхода зрительного нерва называется слепым пятном.

Полость глазного яблока заполнена стекловидным телом.

Хрусталик имеет форму двояковыпуклой линзы. Он способен изменять свою кривизну при сокращениях ресничной мышцы. При рассматривании близких предметов хрусталик сжимается, при рассматривании отдаленных – расширяется. Такая способность хрусталика называется аккомодацией.

Между роговицей и радужкой находится передняя камера глаза, между радужкой и хрусталиком – задняя камера. Обе камеры заполнены прозрачной жидкостью.

Лучи света, отражаясь от предметов, проходят через роговицу, влажные камеры, хрусталик, стекловидное тело и, благодаря преломлению в хрусталике, попадают на желтое пятно  сетчатки – место наилучшего видения. При этом возникает действительное, обратное, уменьшенное изображение предмета.

От сетчатки по зрительному нерву импульсы поступают в центральную часть анализатора – зрительную зону коры мозга, расположенную в затылочной доле. В коре информация, полученная от рецепторов сетчатки, перерабатывается и человек воспринимает естественное отражение объекта.

Нормальное зрительное восприятие обусловлено:

– достаточным световым потоком;

– фокусированием изображения на сетчатке (фокусирование перед сетчаткой означает близорукость, а за сетчаткой – дальнозоркость);

– осуществлением аккомодационного рефлекса.

Важнейшим показателем зрения является его острота, т.е. предельная способность глаза различать мелкие объекты.

Аккомодация приспособление глаза к видению различно удаленных предметов. При аккомодации сокращаются мышцы, которые изменяют кривизну хрусталика. При постоянной избыточной кривизне хрусталика световые лучи преломляются перед сетчаткой и в результате возникает близорукость.

Если же кривизна хрусталика недостаточна, то световые лучи фокусируются за сетчаткой и возникает дальнозоркость. Близорукость развивается при увеличенной продольной оси глаза.

Параллельные лучи, идущие от далеких предметов, собираются (фокусируются) впереди сетчатки, на которую попадают расходящиеся лучи и в результате получается расплывчатое изображение.

При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, уменьшающими преломление лучей настолько, что изображение предметов возникает на сетчатке. Дальнозоркость наблюдается при укороченной оси глазного яблока. Изображение фокусируется позади сетчатки.

Для исправления зрения требуются двояковыпуклые стекла. Старческая дальнозоркость развивается обычно после 40 лет, когда хрусталик теряет эластичность, твердеет и утрачивает способность менять кривизну, что мешает четко видеть на близком расстоянии. Глаз утрачивает способность к ясному видению разноудаленных предметов.

Орган слуха и равновесия.

Слуховой анализатор  обеспечивает восприятие звуковой информации и ее обработку в центральных отделах коры головного мозга.

Периферическую часть анализатора образуют: внутренне ухо и слуховой нерв.

Центральная часть образована подкорковыми центрами среднего и промежуточного мозга и височной зоной коры.

Ухо  – парный орган, состоящий из:

Наружного уха – включает ушную раковину, наружный слуховой проход и барабанную перепонку.

Среднего уха –  состоит из барабанной полости, цепочки слуховых косточек и слуховой (евстахиевой) трубы. Слуховая труба связывает барабанную полость с полостью носоглотки. Это обеспечивает выравнивание давления по обеим сторонам барабанной перепонки.

Слуховые косточки – молоточек, наковальня и стремечко связывают барабанную перепонку с перепонкой овального окна, ведущего в улитку.

Среднее ухо обеспечивает передачу звуковых волн из среды с низкой плотностью (воздух) в среду с высокой плотностью (эндолимфу), в которой находятся рецепторные клетки внутреннего уха.

Внутреннего уха –  расположено в толще височной кости и состоит из костного и расположенного в нем перепончатого лабиринта. Пространство между ними заполнено перилимфой, а полость перепончатого лабиринта – эндолимфой. В костном лабиринте различают три отдела – преддверие, улитку и полукружные каналы.

     К органу слуха относится улитка – спиральный канал в 2,5 оборота. Полость улитки разделена перепончатой основной мембраной, состоящей из волоконец разной длины. На основной мембране находятся рецепторные волосковые клетки. Колебания барабанной перепонки передаются слуховым косточкам.

Они усиливают эти колебания почти в 50 раз и через овальное окошко передаются в жидкость улитки, где воспринимаются волоконцами основной мембраны. Рецепторные клетки улитки воспринимают раздражение, поступающее от волоконец и по слуховому нерву передают его в височную зону коры головного мозга.

Ухо человека воспринимает звуки частотой от 16 до 20 000 Гц.

Орган равновесия  или вестибулярный аппарат  образован двумя мешочками , заполненными жидкостью, и тремя полукружными каналами. Рецепторные волосковые клетки  расположены на дне и внутренней стороне мешочков.

К ним примыкает мембрана с кристаллами – отолитами, содержащими ионы кальция. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. В основаниях каналов находятся волосковые клетки. Рецепторы отолитового аппарата реагируют на ускорение или замедление прямолинейного движения.

Рецепторы полукружных каналов раздражаются при изменениях вращательных движений. Импульсы от вестибулярного аппарата по вестибулярному нерву поступают в ЦНС. Сюда же поступают импульсы от рецепторов мышц, сухожилий, подошв.

Функционально вестибулярный аппарат связан с мозжечком, отвечающим за координацию движений, ориентацию человека в пространстве.

Вкусовой анализатор  состоит из рецепторов, расположенных во вкусовых почках языка, нерва, проводящего импульс в центральный отдел анализатора, который находится на внутренних поверхностях височной и лобной долей.

Обонятельный анализатор  представлен обонятельными рецепторами, находящимися в слизистой оболочке носа. По обонятельному нерву сигнал от рецепторов поступает в обонятельную зону коры головного мозга, находящуюся рядом со вкусовой зоной.

Кожный анализатор  состоит из рецепторов, воспринимающих давление, боль, температуру, прикосновение, проводящих путей и зоны кожной чувствительности, расположенной в задней центральной извилине.

Тематические задания

А1. Анализатор

1) воспринимает и перерабатывает информацию

2) проводит сигнал от рецептора в кору полушарий

3) только воспринимает информацию

4) только передает информацию по рефлекторной дуге

А2. Сколько звеньев в анализаторе

1) 2             

2) 3             

3) 4             

4) 5

А3. Размеры и форма предмета анализируются в

1) височной доле мозга         

3) затылочной доле мозга

2) лобной доле мозга             

4) теменной доле мозга

А4. Высота звука распознается в

1) височной доле коры          

3) затылочной доле

2) лобной доле                       

4) теменной доле

А5. Воспринимающим световое раздражение органом является

1) зрачок 

2) хрусталик 

3) сетчатка 

4) роговица

А6. Воспринимающим звуковые раздражения органом является

1) улитка 

2) евстахиева труба 

3) слуховые косточки 

4) овальное окошко

А7. Максимально усиливает звуки

1) наружный слуховой проход      

2) ушная раковина

3) жидкость улитки                         

4) комплект слуховых косточек

А8. При возникновении изображения перед сетчаткой возникает

1) куриная слепота 

2) дальнозоркость 

3) близорукость 

4) дальтонизм

А9. Деятельность вестибулярного аппарата регулируется

1) вегетативной нервной системой

2) зрительной и слуховой зонами

3) ядрами продолговатого мозга

4) мозжечком и двигательной зоной коры мозга

А10. Укол, ожог анализируются в

1) лобной доле головного мозга    

2) затылочной доле мозга

3) передней центральной извилине

4) задней центральной извилине

В1. Выберите отделы анализаторов, в которых воспринимается раздражение

1) поверхность кожи       

2) улитка                         

3) слуховой нерв

4) зрительная зона коры

5) вкусовые почки языка

6) барабанная перепонка

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/chelovek-i-ego-zdorove/5-5-1-organy-chuvstv-analizatory-stroenie-i-funktsii-organov-zreniya-i-slukha

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.